Chemical Engineering Communications, Vol.196, No.1-2, 68-79, 2009
Dynamic Analysis of Sorption of Volatile Organic Compounds in Water
Chlorinated and brominated volatile organic compounds are among the groundwater pollutants creating major environmental problems. In this study, dynamic behavior of certain volatile organic compounds in water was investigated by using a novel moment technique. Adsorption equilibrium constant and the penetration length of tracers were evaluated by the first absolute and the second central moment expressions derived for a pulse-response system. In order to obtain adsorption equilibrium constant and penetration length, pulse-response experiments were carried out with different tracers in a one-sided adsorption cell at 30 degrees C. The adsorption equilibrium constants at the gas-water interface were calculated for 1,2-dichloroethane, 1,1,1-trichloroethane, and carbon tetrachloride. This study showed that the adsorption equilibrium constant and the penetration length values could be successfully evaluated using the one-sided adsorption cell moment technique. The adsorption equilibrium constant for 1,2-dichloroethane, 1,1,1-trichloroethane, and carbon tetrachloride were found to be 0.30, 0.49, and 0.54 cm(3)/cm(2), respectively.