Chemical Engineering Journal, Vol.139, No.2, 344-350, 2008
Product quality improvement of batch crystallizers by a batch-to-batch optimization and nonlinear control approach
Batch crystallization is one of the widely used processes for separation and purification in many chemical industries. Dynamic optimization of such a process has recently shown the improvement of final product quality in term of a crystal size distribution (CSD) by determining an optimal operating policy. However, under the presenceof unknown or uncertain model parameters, the desired product quality may not be achieved when the calculated optimal control profile is implemented. In this study, a batch-to-batch optimization strategy is proposed for the estimation of uncertain kinetic parameters in the batch crystallization process, choosing the seeded batch crystallizer of potassium sulfate as a case study. The information of the CSD obtained at the end of batch run is employed in such an optimization-based estimation. The updated kinetic parameters are used to modify an optimal operating temperature policy of a crystallizer for a subsequent operation. This optimal temperature policy is then employed as new reference for a temperature controller which is based on a generic model control algorithm to control the crystallizer in a new batch run. (C) 2007 Elsevier B.V. All rights reserved.
Keywords:batch crystallization;batch-to-batch optimization;parameter estimation;generic model control