화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.6, 622-627, December, 2009
감광성 폴리머 저항 페이스트 제조와 미세패턴 후막저항의 형성
Fabrication of Photosensitive Polymer Resistor Paste and Formation of Finely-Patterned Thick Film Resistors
E-mail:
초록
알칼리 수용액에 현상이 가능한 감광성 수지재료와 전도성 카본블랙 필러를 이용하여 포토 패터닝이 가능한 폴리머 후막저항 페이스트를 제조하고 평가하였다. 감광성 수지로는 인쇄회로기판의 보호층으로 주로 사용되는 photo solder resist (PSR)를 사용하여 자외선에 의한 노광 및 알칼리 수용액에의 현상이 가능하게 하였다. 감광성 폴리머 저항 페이스트를 제작한 후, PCB 테스트 보드를 이용하여 후막저항체의 전기적 특성을 평가하였다. 카본블랙의 첨가량에 따라 시트저항은 감소하였으나, 과량 첨가시에는 현상성에 한계를 나타내었다. 재경화에 따라서 시트저항이 감소하였으며, 카본블랙의 첨가량이 많을수록 그 변화율은 작게 나타났다. 포토공정을 적용하여, 미세 패터닝된 meander형 후막저항체를 제조할 수 있었고, 이 방법을 통하여 적은 면적에도 시트저항의 수십 배에 달하는 큰 저항값을 구현할 수 있었다.
Using an alkali-solution developable photosensitive resin and a carbon black as a conductive filler, photo-patternable pastes for polymer thick film resistor were fabricated and evaluated. A photo solder resist (PSR), which is usually used as protecting layer of printed circuit board (PCB), was used as a photosensitive resin so that ultraviolet exposure and alkali-aqueous solution development of paste were possible. After fabricating the photosensitive polymer resistor paste, the electrical properties of thick film resistors were measured using PCB test boards. Sheet resistance was decreased with increasing amount of carbon black, but the developability was limited in excess loading of carbon black. The sheet resistance was also reduced by re-curing and the change rate was smaller in higher carbon black loading. Moreover, finely patterned meander-type thick film resistors were fabricated using photo-process and large resistance up to several tens of sheet resistance could be obtained in small area by this technique.
  1. Bhattacharya SK, Tummala RR, J. Mater. Sci., Mater. Electron., 11, 253 (2000)
  2. Cases M, de Araujo DN, Pham NN, Patel P, Archambeault B, Advancing Microelectronics, July/August 2005, 6 (2005)
  3. Norlyng S, Advancing Microelectronics, May/June 2003, 9 (2003)
  4. Peiffer JS, Circuitree.Com, May 2007, 22 (2007)
  5. Jillek W, Yung WKC, Int. J. Adv. Manuf. Technol., 25, 350 (2005)
  6. Perala K, Proc. 9th Intern. Symp. Advanced Packaging Materials, 220 (2004)
  7. Su JTT, Proc. 9th Intern. Symp. Advanced Packaging Materials, 74 (2004)
  8. Electronic Engineering (Kor), April 2003, 138 (2003)
  9. Dziedzic A, Microelectronics Reliability, 47, 354 (2007)
  10. Dziedzic A, Czarczynska H, Licznerski BW, Rangelov I, J. Mater. Sci., Mater. Electron., 4, 233 (1993)
  11. Czarczynska H, Dziedzic A, Licznerski BW, Lukaszewics M, Seweryn A, Microelectronics Journal, 24, 689 (1993)
  12. Dziedzic A, Kolek A, J. Phys. D: Appl. Phys., 31, 2091 (1998)
  13. Dziedzic A, Magiera A, Winsiewski R, Microelectronics Reliability, 38, 1893 (1998)
  14. Lee SM, Yoo MJ, Park SD, Kang NK, Nahm S, J. Microelectronics & Packaging Soc., 15, 27 (2008)
  15. Dziedzic A, Rebenklau L, Golonka LJ, Wolter KJ, Microelectronics Reliability, 43, 377 (2003)
  16. Onodera S, Kakinuma M, Nakamura Y, Jap. J. Polymer Sci. Tech., 52, 105 (1995)
  17. U. S. Patent 6,576,409 (2003)
  18. Cazenave JP, Suess TR, Proc. Intern. Symp. Microelectronics Conf., 483, Dallas, USA (1993)
  19. Park SD, Yoo MJ, Kang NK, Park JC, Lim JK, Kim DK, Macromol. Res., 12(4), 391 (2004)
  20. Skurski M, Smith M, Draudt R, Amey D, Horowitz S, Champ M, Int. J. Microcircuits & Electronic Packaging, 21, 355 (1998)
  21. Inagaki S, Journal of the Society of Rubber Industry of Japan, 79, 406 (2006)
  22. Takayama M, Photosensitive resin of a new time - Application of photoreactive resin, ed. Akamatsu K, 99, CMC books, Tokyo (2003)
  23. Andresakis J, Pramanik P, Brandler D, Nong D, Proc. 2006 Electronic Components and Technology Conf., 1544 (2006)
  24. Lee KJ, Bhattacharya S, Varadarajan M, Wan L, Abothu IR, Sundaram V, Muthana P, Balaraman D, Raj PM, Swaminathan M, Sitaraman S, Tummala R, Viswanadham P, Dunford S, Lauffer J, Proc. Intern. Symp. Advanced Packaging Materials, 249 (2005)
  25. http://www.ohmega.com/DesignResistor.html.