화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.6, 658-662, December, 2009
아민 처리가 탄소나노튜브의 이산화탄소 흡착거동에 미치는 영향
Influence of Amine Surface Treatment on Carbon Dioxide Adsorption Behaviors of Activated Carbon Nanotubes
E-mail:
초록
본 연구에서는 탄소나노튜브를 KOH를 이용하여 활성화 한 후 이를 아민으로 표면처리한 탄소나노튜브의 이산화탄소 흡착 거동에 관하여 고찰하였다. 아민 처리한 탄소나노튜브의 물리화학적 특성은 X-ray photoelectron spectroscopy (XPS), N2 adsorption isotherm, thermogravimetric analysis (TGA), 그리고 temperature programmed desorption (TPD)을 이용하여 분석하였다. 실험 결과, 활성화된 탄소나노튜브 표면의 아미노 관능기는 산성가스인 이산화탄소를 선택적으로 흡착하기 위한 염기성 자리로서 작용하였다. 상온에서의 이산화탄소 흡착량은 미처리된 탄소나노튜브가 가장 크게 나타났으나 온도가 증가할수록 급격한 감소를 나타내었으며 PEHA 처리한 경우 완만한 흡착거동을 보였다. 이는 탄소표면의 아미노 관능기와 이산화탄소 사이의 상호작용 때문이라 판단된다.
In this work, the amine-treated activated carbon nanotubes (A-MWNTs) were used to investigate the CO2 adsorption behaviors. A-MWNTs were prepared by impregnation with amine in methanol after chemical activation methods using a KOH. The characteristics of amine-treated A-MWNTs were studied by X-ray photoelectron spectroscopy (XPS), N2 adsorption, desorption isotherms at 77 K. The specific surface area and pore volume of the A-MWNTs were analyzed by BET equation, BJH method, and t-plot method. CO2 capture capacity as a function of temperature was measured by temperature programmed desorption (TPD). From the results, the amine treatment increased the basicity and nitrogen content of the A-MWNTs. The CO2 adsorption capacity of the amine-nontreated A-MWNTs showed the highest value at room temperature and then greatly decreased with increasing the temperature. However, the amine-treated A-MWNTs presented a softer slope with temperature compared to the amine-nontreated ones. It was due to the strong interactions between CO2 and amino groups presented on the carbon surfaces studied.
  1. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press (2001)
  2. Xu X, Song CS, Andresen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29 (2003)
  3. Yoo YJ, Kim HS, Park JH, Han SS, Cho SH, J. Korean Ind. Eng. Chem., 18(3), 273 (2007)
  4. Li PY, Zhang SJ, Chen SX, Zhang QK, Pan JJ, Ge BQ, J. Appl. Polym. Sci., 108(6), 3851 (2008)
  5. Hughes RW, Lu DY, Anthony EJ, Macchi A, Fuel Process. Technol., 86(14-15), 1523 (2005)
  6. Lee KM, Jo YM, J. Korean Ind. Eng. Chem., 19(5), 533 (2008)
  7. Jeon JK, Park YK, Chue K, J. KOSAE, 20, 99 (2004)
  8. Hutson ND, Chem. Mater., 16, 4135 (2004)
  9. IPCC Special Report on carbon dioxide capture and storage intergovernmental panel on climate change. Cambridge university Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore and Sao Paulo (2005)
  10. Damen K, van Troost M, Faaij A, Turkenburg W, Prog. Energy Combust. Sci., 32, 215 (2006)
  11. Xu X, Song C, Andresen JM, Miller B, Scaroni A, Micropor. Mesopor. Mater., 62, 29 (2003)
  12. Arenillas A, Rubiera F, Parra JB, Ania CO, Pis JJ, Appl. Surf. Sci., 252(3), 619 (2005)
  13. Drage TC, Arenillas A, Smith KM, Pevida C, Piippo S, Snape CE, Fuel, 86, 22 (2007)
  14. Maroto-Valer MM, Tang Z, Zhang YZ, Fuel Process. Technol., 86(14-15), 1487 (2005)
  15. Przepiorski J, Skrodzewicz M, Morawski AW, Appl. Surf. Sci., 225(1-4), 235 (2004)
  16. Mohamed KA, Wan MAWD, Yin CY, Adinata D, Sep. Purif. Technol., 62, 611 (2008)
  17. Park SJ, Kim KD, Lee JR, J. Korean Ind. Eng. Chem., 9(6), 920 (1998)
  18. Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999)
  19. Knowles GP, Delaney SW, Chaffee AL, Ind. Eng. Chem. Res., 45(8), 2626 (2006)
  20. Gray ML, Soong Y, Champagne KJ, Pennline H, Baltrus JP, Stevens RW, Khatri R, Chuang SSC, Filburn T, Fuel Process. Technol., 86(14-15), 1449 (2005)
  21. Xu XC, Song CS, Miller BG, Scaroni AW, Fuel Process. Technol., 86(14-15), 1457 (2005)
  22. Hiyoshi N, Yogo K, Yashima T, Chem. Lett., 33(5), 510 (2004)
  23. Plaza MG, Pevide C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86, 2204 (2007)
  24. Son WJ, Choi JS, Ahn WS, Micropor. Mesopor. Mater., 113, 31 (2008)
  25. Park SJ, Jin SY, Kawasaki J, J. Korean Ind. Eng. Chem., 14(8), 1111 (2003)
  26. Jiang Q, Qu MZ, Zhang BL, Yu ZL, Carbon, 40, 2743 (2002)
  27. Kim BJ, Lee YS, Park SJ, J. Colloid Interface Sci., 306(2), 454 (2007)
  28. Park SJ, Kim KD, Carbon, 39, 1741 (2001)
  29. brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  30. Lee KM, Jo YM, J. Korean Ind. Eng. Chem., 19(5), 533 (2008)