Computers & Chemical Engineering, Vol.33, No.10, 1735-1746, 2009
Optimization-based strategies for the operation of low-density polyethylene tubular reactors: nonlinear model predictive control
In this work, we present a general nonlinear model predictive control (NMPC) framework for low-density polyethylene (LDPE) tubular reactors. The framework is based on a first-principles dynamic model able to capture complex phenomena arising in these units. We first demonstrate the potential of using NMPC to simultaneously regulate and optimize the process economics in the presence of persistent disturbances such as fouling. We then couple the NMPC controller with a compatible moving horizon estimator (MHE) to provide output feedback. Finally, we discuss computational limitations arising in this framework and make use of recently proposed advanced-step MHE and NMPC strategies to provide nearly instantaneous feedback. (C) 2009 Elsevier Ltd. All rights reserved.