- Previous Article
- Next Article
- Table of Contents
Current Microbiology, Vol.57, No.4, 269-273, 2008
Novel light-activated antimicrobial coatings are effective against surface-deposited Staphylococcus aureus
Aerosols constitute a major route of transmission for a wide range of infectious diseases in the hospital setting. The aim of this study was to determine the survival of Staphylococcus aureus on a light-activated antimicrobial coating. S. aureus suspended in phosphate-buffered saline (PBS), saliva, or horse serum was sprayed onto cellulose acetate coatings containing toluidine blue O and rose bengal and the survival of the organism on these surfaces was determined following 6 h of exposure to a 28-W domestic fluorescent lamp (light intensity = 3700 +/- 20 lux). Kills ranging from 78.9% (in horse serum) to 99.8% (in PBS) were obtained when the bacterial density on the coatings was similar to 10(5) colony-forming units/m(2). The results of this study have shown that a coating containing toluidine blue and rose bengal can achieve significant kills of S. aureus when illuminated by a domestic light source. Light-activated coatings could provide a simple, low-cost means of reducing the microbial load in hospitals and other facilities.