Energy, Vol.33, No.8, 1311-1319, 2008
Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine
The ongoing human-induced emission of carbon dioxide (CO2) threatens to change the earth's climate. A major factor in global warming is CO2 emission from thermal power plants, which burn fossil fuels. One possible way of decreasing CO2 emissions is to apply CO2 removal, which involves recovering of CO2 from energy conversion processes. This study is focused on recovery Of CO2 from gas turbine exhaust of Sarkhun gas refinery power station. The purpose of this study is to recover the CO2 with minimum energy requirement. Many Of CO2 recovery processes from flue gases have been studied. Among all CO2 recovery processes which were studied, absorption process was selected as the optimum one, due to low CO2 concentration in flue gas. The design parameters considered in this regard, are: selection of suitable solvent, solvent concentration, solvent circulation rate, reboiler and condenser duty and number of stages in absorber and stripper columns. In the design of this unit, amine solvent such as, diethanolamine (DEA), diglycolamine (DGA), methyldiethanolamine (MDEA), and monoethanolamine (MEA) were considered and the effect of main parameters on the absorption and stripping columns is presented. Some results with simultaneous changing of the design variables have been obtained. The results show that DGA is the best solvent with minimum energy requirement for recovery Of CO2 from flue gases at atmospheric pressure. (C) 2008 Elsevier Ltd. All rights reserved.