화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.53, No.6, 1434-1448, 2008
Cooperative control of multiple nonholonomic mobile agents
This paper considers two cooperative control problems for nonholonomic mobile agents. In the first problem, we discuss the design of cooperative control laws such that a group of nonholonomic mobile agents cooperatively converges to some stationary point under various communication scenarios. Dynamic control laws for each agent are proposed with the aid of or-processes and results from graph theory. In the second problem, we discuss the design of cooperative control laws such that a group of mobile agents converges to and tracks a target point which moves along a desired trajectory under various communication scenarios. By introducing suitable variable transformations, cooperative control laws are proposed. Since communication delay is inevitable in cooperative control, in each of the above cooperative control problems, we analyze the effect of delayed communication on the proposed controllers. As applications of the proposed results, formation control of wheeled mobile robots is discussed. It is shown that our results can be successfully used to solve formation control problem. To show effectiveness of the proposed approach, simulation results are included.