Industrial & Engineering Chemistry Research, Vol.47, No.18, 7118-7129, 2008
Energy and hydrogen coproduction from (Athabasca bitumen) coke gasification with CO2 capture
Performance and economic assessments of exploitation of Athabasca bitumen coke (ABC) have been conducted to alleviate the dependence toward natural gas in bitumen recovery and upgrading. Power and hydrogen production from ABC-fed integrated gasification with combined cycle JGCQ with CO2 capture or sequestration islands, namely, CO2 physical absorption in the Selexol process and CO2 mineral trapping (MT) with Ca(Il)bearing natural brines from local aquifers, have been analyzed. Simulations show that production costs of power (electricity and heat) and H2 from the IGCC/Selexol process are 0.0584 $/kWh(h), 0.046 $/kWh(h), and 1.4 $/kg H-2, which could be competitive with current natural gas technologies. IGCC/Selexol outperforms the IGCC/MT process, which is reflected in larger production costs for power and H-2 due to the cost of the pl-l-controlling reagents.