화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.48, No.8, 3825-3836, 2009
Experimental and Modeling Analysis of Methane Partial Oxidation: Transient and Steady-State Behavior of Rh-Coated Honeycomb Monoliths
The present study consists of an experimental and theoretical study of the performance of Rh-coated honeycomb monoliths for methane partial oxidation. The thermal behavior of Rh-coated honeycomb monoliths was studied under representative operating conditions, at steady state and during light-off. Model analysis (based on a dynamic heterogeneous reactor model that incorporates a kinetic scheme of the process independently developed, and well-assessed correlations for heat and mass transfer) provided a key for interpreting the observed effects. The comprehension of how transport phenomena and surface kinetics affect the reactor behavior leads to the conclusion that the feasibility of small-scale production of syngas via CH4 catalytic partial oxidation relies on thermal management of the short contact time reactor and not the obtainment of high syngas yields (which is not a challenging task). Severe operating conditions (and high surface temperatures) can deplete the catalyst activity and cause unstable reactor operation. Guidelines for optimal reactor design are proposed.