화학공학소재연구정보센터
International Journal of Control, Vol.81, No.9, 1382-1398, 2008
Control reconfiguration after actuator failures by Markov parameter matching
Two novel linear control reconfiguration methods for plants subject to actuator failures are described. The common idea is to place a reconfiguration block between the faulty plant and the nominal controller in order to re-route the signals around the broken actuator. The first method uses a computationally simple static reconfiguration block. It recovers the nominal plant input/output-behaviour by assigning the faulty plant the same Markov parameters as the faultless plant. The second method concerns the design of the feedforward part in the virtual actuator using the idea and results of the first approach. The virtual actuator is a dynamical reconfiguration block. Existence conditions and solution algorithms are provided, and it is shown that both approaches guarantee the closed-loop stability if the existence conditions are met. An experimental study demonstrates the practical usability of the proposed approaches.