International Journal of Heat and Mass Transfer, Vol.51, No.15-16, 3712-3723, 2008
Analysis of transport phenomena within PEM fuel cells - An analytical solution
Transport phenomena within PEM fuel cells are investigated and a comprehensive analytical solution is presented. The methodology couples the transport within the fuel cell supply channels and the substrate which is composed of five different layers. The layers are all treated as macroscopically homogeneous porous media with uniform morphological properties such as porosity and permeability. The locally volume-averaged equations are employed to solve for transport through the porous layers. The problem encompasses complex interfacial transport phenomena involving several porous-porous as well as porous-fluid interfaces. Chemical reactions within the catalyst layers are also included. The method of matched asymptotic expansions is employed to solve for the flow field and species concentration distributions. Throughout the analysis, the choice of the gauge parameters involved in the perturbation solutions for velocity and concentration is found to be inherently tied to the physics of the problem and therefore an important physical metric. The analytical solution is found to be in excellent agreement with prior computational simulations. The analytical results are used to investigate several aspects of transport phenomena and their substantial role in PEM fuel cell operation. The solution presented in this work provides the first comprehensive analytical solution representing fuel cell transport phenomena. (C) 2008 Elsevier Ltd. All rights reserved.