화학공학소재연구정보센터
Journal of Applied Microbiology, Vol.105, No.5, 1452-1460, 2008
Leaching of bioluminescent Escherichia coli O157:H7 from sheep and cattle faeces during simulated rainstorm events
Aims: Development of a novel inoculation technique to improve the current methods of determining the leaching of Escherichia coli O157:H7 from faeces. Methods and Results: Ruminant faeces were inoculated with a high [c. 10(7) colony forming units (CFU) g(-1)] or low (c. 10(4) CFU g(-1)) load of a lux-marked strain of E. coli O157:H7 via injection, and subjected to four simulated heavy rainfall events. The population density and metabolic activity of E. coli O157:H7 recovered within the leachate was determined following each simulated rain event and compared with the indigenous E. coli population. The concentration of E. coli O157:H7 in the leachates followed a similar trend to that of nonpathogenic E. coli. Significantly greater densities of generic and pathogenic E. coli were recovered in the leachates generated from sheep faeces compared with cattle faeces. Pathogen metabolic activity was also significantly greater in sheep faeces. Conclusions: Our findings show that E. coli O157:H7 may readily leach from ruminant faeces during rain events. The bacterium leaches more freely from sheep faeces than from cattle faeces and displays greater metabolic activity within sheep leachate. Significance and Impact of the Study: A novel inoculation technique was developed that allowed the determination of both population density and cellular activity of E. coli O157:H7 in leachate derived from faeces.