Journal of Colloid and Interface Science, Vol.325, No.2, 316-323, 2008
Regular and irregular deswelling of polyacrylate and hyaluronate gels induced by oppositely charged surfactants
The deswelling kinetics of macroscopic polyacrylate (PA) gels in solutions of dodecyltrimethylammonium bromide (C(12)TAB) and cetyltrimethylammonium bromide (C(16)TAB), with and without added sodium bromide, as well as hyaluronate (HA) gels in solutions of cetylpyridinium chloride (CPC) are investigated. Additional data are also provided by small-angle X-ray scattering and microgel experiments. The purpose is to study the deswelling behavior of (1) regularly deswelling gels, for which the deswelling is successfully described using a core/shell model earlier employed for microgels, and (2) irregularly deswelling gels, where the gel turns into a balloon-like structure with a dense outer layer surrounding a liquid-filled core. For regularly deswelling gets, the deswelling of PA/C(12)TAB is found to be controlled by diffusion through both stagnant layer and collapsed surface phase, while for PA/C(16)TAB it is found to be controlled mainly by the latter. The difference in deswelling rate between the two is found to correspond to the difference in surfactant diffusion coefficient in the surface phase. Factors found to promote irregular deswelling, described as balloon formation, are rapid surfactant binding, high bromide and surfactant concentration, longer surfactant chain length, and macroscopic gel size. Scattering data indicating a cubic structure for HA/CPC complexes are reported. (c) 2008 Elsevier Inc. All rights reserved.