Journal of Colloid and Interface Science, Vol.332, No.1, 22-31, 2009
A combined QCM and XPS investigation of asphaltene adsorption on metal surfaces
To investigate asphaltene-metal interactions, a combined quartz crystal microbalance (QCM) and Xray photoelectron spectroscopy (XPS) study of asphaltene adsorption on a gold surface was conducted. Adsorption experiments were conducted at 25 degrees C with solutions of asphaltenes in toluene at concentrations ranging from 50 to 1500 ppm. QCM measurements yielded information on the kinetics of adsorption and further assessment of the data allowed the estimation of equilibrium adsorption levels. XPS analysis of adsorbed and bulk asphaltene demonstrated the presence of carboxylic, thiophenic, sulfide, pyridinic and pyrrolic type functional groups. The intensity of the main carbon (C-H) peak was related to surface coverage of adsorbed asphaltene as a function of asphaltene concentration by a simple mathematical model. The mass adsorption data from the QCM experiments also allowed estimation of the surface coverage, which was compared to those from XPS analyses. Surface coverage estimates as a function of asphaltene concentration could be described by a Langmuir (type-I) isotherm. The free energy of asphaltene adsorption was estimated to be -26.8 +/- 0.1 and -27.3 +/- 0.1 kJ/mol from QCM and XPS data, respectively assuming asphaltene molar mass of 750 g/gmol. QCM and XPS data was also analyzed to estimate adsorbed layer thickness after accounting for surface coverage. The thickness of the adsorbed asphaltene estimated from both XPS and QCM data analyses ranged from 6-8 nm over the entire range of adsorption concentrations investigated. (c) 2009 Elsevier Inc. All rights reserved.