Journal of Hazardous Materials, Vol.169, No.1-3, 360-369, 2009
A descriptive model for metallic ions adsorption from aqueous solutions onto activated carbons
The design of adsorber units is mainly dependent on the equilibrium adsorption capacity of the sorbent in the working conditions. At the moment, these data are available in a limited number of experimental conditions and, for the case of activated carbon, there are no predictive models to assess the adsorption capacity as a function of the process parameters. This makes the adsorber design a complex and approximated task. In this work, a model for the description of metallic ions absorption onto activated carbon is presented. The model starts from an evaluation of ion speciation and it considers the approach of the multi-component Langmuir model to correlate the metal uptake to the ion concentration in solution. The model has been used to analyse available experimental data on the adsorption of As(V), Cd(II), Cr(III) and Cr(VI) ions on activated carbon. A good matching between experimental results and model predictions has been obtained for all the investigated conditions. (C) 2009 Elsevier B.V. All rights reserved.