Journal of Materials Science, Vol.43, No.20, 6724-6733, 2008
Analysis of the structure and deformation of a woven composite lamina using X-ray microdiffraction
X-ray diffraction (XRD) is an important tool for studying multiphase materials because it can resolve parameters from each phase independently. When coupled with a high-flux, microfocussed X-ray beam, scanning microdiffraction experiments are possible. This technique can investigate how reciprocal-space parameters vary as a function of real-space sample geometry for heterogeneous materials. Consequently, multiphase materials can be imaged in terms of those parameter variations. This study reports on the use of microfocussed X-ray diffraction (mu XRD) to both image and follow the deformation of a multiphase material. In this case, this technique is applied to the study of a woven fibre-reinforced composite (FRC) lamina. Such systems are difficult to study with other experimental techniques because the fibres are inaccessible and the matrix is often opaque. However, using mu XRD it is possible to assess both sample geometry and stress field information simultaneously.