화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.2, 645-650, February, 2010
Sintering characteristics of TiO2 nanoparticles by microwave processing
E-mail:
In many applications, sintering of particles is required to improve device efficiency. In particular, sintering of TiO2 nanoparticles attracts great attention because of growing of solar cell applications, and conventional sintering using an electrical furnace has been widely used for sintering of nanoparticles. In this study, conventional and microwave sintering processes were investigated to examine the possibility of application of microwave sintering method to TiO2 nanoparticles. Microwave sintering of TiO2 nanoparticles showed promising results compared with the conventional heat treatments in terms of surface area, crystalline phase, optical property and morphology. Considering the short sintering time, the microwave method could be more advantageous than the conventional sintering method in some application areas.
  1. Glowczyk-Zubek J, J. Appl. Cosmetol., 22, 143 (2004)
  2. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25(1), 64 (2008)
  3. Kim HR, Choi KY, Shul YG, Korean J. Chem. Eng., 24(4), 596 (2007)
  4. Nam WS, Han GY, Korean J. Chem. Eng., 20(1), 180 (2003)
  5. Chai YS, Lee JC, Kim BW, Korean J. Chem. Eng., 17(6), 633 (2000)
  6. Kuwabata S, Yamauchi H, Yoneyama H, Langmuir, 14(7), 1899 (1998)
  7. Ferry JL, Glaze WH, Langmuir, 14(13), 3551 (1998)
  8. Crittenden JC, Liu J, Hand DW, Perram DL, Water Res., 31, 429 (1997)
  9. O’Regan B, Gratzel M, Nature, 353, 737 (1991)
  10. Lee JW, Hwang KJ, Shim WG, Park KH, Gu HB, Kwun KH, Korean J. Chem. Eng., 24(5), 847 (2007)
  11. Ngamsinlapasathian S, Sreethawong T, Suzuki Y, Yoshikawa S, Sol. Energ. Mat. Sol. C., 86, 269 (2005)
  12. Kang MG, Park NG, Chang SH, Sol. Energy Mater. Sol. C., 75, 475 (2003)
  13. Park NG, van de Lagemaat J, Frank AJ, J. Phys. Chem. B, 104(38), 8989 (2000)
  14. Gratzel M, Prog. Photovolt: Res. Appl., 8, 171 (2000)
  15. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, J. Am. Ceram. Soc., 80, 3157 (1997)
  16. Sutton WH, Am. Ceram. Soc. Bull., 68, 376 (1989)
  17. Upadhyaya DD, Ghosh A, Dey GK, Prasad R, Suri AK, J. Mater. Sci., 36(19), 4707 (2001)
  18. Borkar SA, Dharwadkar SR, Ceram. Int., 30, 509 (2004)
  19. Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307 (2003)
  20. Park JH, Ahn ZS, J. Mater. Sci., 30(13), 3339 (1995)
  21. Spurr RA, Myers H, Anal. Chem., 29, 760 (1957)
  22. Cullity BD, Stock SR, Elements of X-ray diffraction, Prentice Hall, London (2001)
  23. Kubelka P, J. Opt. Am., 38, 448 (1948)
  24. Kubelka P, Munk F, Z. Tech. Phys., 12, 593 (1938)
  25. http://rsbweb.nih.gov/ij/index.html