화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.1, 87-92, February, 2010
이온교환막을 결합한 축전식 탈염 시스템을 이용한 염수의 탈염
Desalination of Brackish Water by Capacitive Deionization System Combined with Ion-exchange Membrane
E-mail:
초록
탄소전극으로만 구성된 단위 셀(CDI)과 음극 표면에 양이온교환막을 결합한 단위 셀(MCDI)을 제작하여 탈염실험을 수행하였다. 실험결과 탈염속도와 탈염량은 셀 전위가 증가할수록 선형적으로 증가하였다. 그러나 동일한 탄소전극을 사용했음에도 불구하고 MCDI 셀이 CDI 셀보다 높은 탈염효율을 보였다. 셀 전위를 0.8∼1.2 V로 변화시키면서 실험한 결과 흡착량은 셀 전위에 따라 MCDI 셀이 CDI 셀보다 33.1∼135% 정도 증가하는 것으로 나타났다. 또한 전류효율에서도 MCDI 셀은 80% 정도를 나타낸 반면 CDI 셀은 40% 이하의 전류효율을 나타내었다. MCDI 셀에서 탈염효율이 높은 원인은 흡착 및 탈착전위가 인가되었을 때 전극 표면의 전기이중층과 bulk 용액 사이에서 이온들이 선택적으로 이동하기 때문인 것으로 사료된다.
Desalination experiments were carried out with two types of cell configuration; a CDI cell constructed with carbon electrodes only and a membrane capacitive deionization (MCDI) cell having a cation-exchange membrane on the cathode surface. The salt removal rate and desalination efficiencies increased linearly with increasing the cell potential. Although the same carbon electrodes were used in the desalination experiments, the MCDI cell showed higher salt removal efficiency than that of the CDI cell. The amount of salt removal for the MCDI cell was enhanced by 33.1∼135% compared to the CDI cell, depending on the applied cell potential in the range of 0.8∼1.2 V. In addition, the current efficiency for the MCDI cell was about 80%, whereas the efficiency was under 40% for the CDI cell. The higher salt removal efficiency in the MCDI cell was attributed to the fact that ions were selectively transported between the electric double layer and the bulk solution in the MCDI cell configuration.
  1. Conway BE, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999)
  2. Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Electrochem. Soc., 143(1), 159 (1996)
  3. Lim JA, Park NS, Park JS, Choi JH, Desalination, 238(1-3), 37 (2009)
  4. Yang CM, Choi WH, Cho BW, Cho WI, Yun KS, Han HS, J. Korean Ind. Eng. Chem., 15(3), 294 (2004)
  5. Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Electrochem. Soc., 143(1), 159 (1996)
  6. Zou L, Li L, Song H, Morris G, Water Res., 42, 2340 (2008)
  7. Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
  8. Xu P, Drewes JE, Heil D, Wang G, Water Res., 42, 2605 (2008)
  9. Gao Y, Pank L, Zhang YP, Chen YW, Sun Z, Surf. Rev. Lett., 14, 1033 (2007)
  10. Li L, Zou L, Song H, Morris G, Carbon, 47, 775 (2009)
  11. Oh HJ, Lee JH, Ahn HJ, Jeong Y, Kim YJ, Chi CS, Thin Solid Films, 515(1), 220 (2006)
  12. Gao Y, Pan L, Li H, Zhang Y, Zhang Z, Chen Y, Sun Z, Thin Solid Films, 517, 1616 (2009)
  13. Yang KL, Yiacoumi S, Tsouris C, J. Electroanal. Chem., 540, 159 (2003)
  14. Hsieh CT, Teng H, Carbon, 40, 667 (2002)
  15. Ying TY, Yang KL, Yiacoumi S, Tsouris C, J. Colloid Interface Sci., 250(1), 18 (2002)
  16. Hou CH, Liang CD, Yiacoumi S, Dai S, Tsouris C, J. Colloid Interface Sci., 302(1), 54 (2006)
  17. Yang KL, Ying TY, Yiacoumi S, Tsouris C, Vittoratos ES, Langmuir, 17, 1964 (2001)
  18. Can. Patent 2,444,390 (2002)
  19. Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
  20. Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z, Water Res., 42, 4923 (2008)
  21. Strathmann H, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004)