화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.30, 7015-7026, 2008
Energies, stability and structure properties of radicals derived from organic sulfides containing an acetyl group after the (OH)-O-center dot attack: ab initio and DFT calculations vs experiment
The mutual location of the sulfur atom and the acetyl group was found to affect significantly the (OH)-O-center dot-induced oxidation mechanism of the organic sulfides containing either an alpha- or beta-positioned acetyl group. This phenomenon was reflected in formation of different intermediate products observed in pulse radiolysis experiments (Varmenot et al. J. Phys. Chem. A. 2004, 108, 6331-6346). In order to obtain a better support for the earlier interpretation of the experimental data, quantum mechanical calculations were performed using a density functional theory method (DFT-B3LYP) and the ab initio method (Moller-Plesset perturbation theory MP2) for optimizations and energy calculations of the parent molecules and radicals and radical cations derived from them. In accordance with experiments, it was found that the alpha-positioned acetyl group in S-ethylthioacetate (SETAc) destabilizes hydroxysulfuranyl radicals and monomeric sulfur radical cations. Instead, formation of stable C-centered radicals of the alpha-(alkylthio)alkyl-type was found energetically favorable, the H3C-(CH)-C-center dot-S-C(= O)CH3 radical, in particular. On the other hand, the beta-positioned acetyl group in S-ethylthioacetone (SETA) does not destabilize hydroxysulfuranyl radicals, monomeric sulfur radical cations, and dimeric sulfur radical cations. Moreover, the alpha-(alkylthio)alkyl radicals of the type -S-(CH)-C-center dot-C(= O)- were found to be particularly stabilized. The calculated transition states pointed toward the efficient direct conversion of the hydroxysulfuranyl radicals derived from SETAC and SETA radicals into the respective C-centered radicals. This reaction pathway, important in neutral solutions, is responsible for the absence of the dimeric radical cations of SETAc at low and high concentrations and of the dimeric radical cations of SETA at relatively low concentrations of the solute.