Journal of Physical Chemistry A, Vol.113, No.11, 2333-2339, 2009
Control of cis-Stilbene Photochemistry Using Shaped Ultraviolet Pulses
We demonstrate product branching control of the photoisomerization and cyclization reactions of cis-stilbene dissolved in n-hexane. An acousto-optical modulator-based pulse shaper was used at 266 nm, in a shaped pump-supercontinuum probe technique, to enhance and suppress the relative yields of the cis- to trans-stilbene isomerization as well as the cis-stilbene to 4a,4b-dihydrophenanthrene cyclization. Global, local, and single variable optimization control schemes were all successful at controlling stilbene's excited-state intramolecular rearrangements. The presence of multiphoton transitions was determined to be crucial in changing the yield under the experimental conditions employed. We have mapped experimental conditions in which multiphoton absorption was successful in controlling photoproduct branching ratios in stilbene, illustrated that the intensity dependence of the product yields can provide details of reactive channel branching ratios of higher excited-states, and shown that under the experimental conditions employed (150 fs laser) intensity control was the only mechanism available to the optimal control methods employed that could affect reaction yields.