화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.113, No.17, 5205-5211, 2009
A Density Functional Theory Study of the Topology of the Charge Density of Complexes of 8-Hydroxyquinoline with Mn(III), Fe(III), and Co(III)
B use of the quantum theory of atoms in molecules, it was found that the electronic charge distribution rho(r) of the metal atoms in Mn(III), Fe(III), and Co(III) complexes of 8-hydroxyquinoline (8HQ) showed eight nonbonded concentrations in their valence shell that were located at the corners of a cube and a depletion region was located in each of its six faces. Coordination Was Such that regions of charge concentration of the ligands matched the depletion ones of the metal. The O- and N-metal bonds showed low rho(r(c)) values at the bond critical point r(c) and low and positive ones for its Laplacian indicating that they were dative bonds of close shell type with a degree of covalency. Most changes in rho(r) were located around the N and O atoms of 8HQ directly involved in dative bonds. By use of the delocalization index (C-A,C-B) Only for C-C bonds, it was found that coordination increased the aromaticity of most of them. The most important changes in rho(r) were found in the C-H bonds were a noticeable increase in bond strength was obtained upon coordination.