화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.114, No.5, 2127-2135, 2010
Conformational Properties of 1-Silyl-1-Silacyclohexane, C5H10SiHSiH3: Gas Electron Diffraction, Low-Temperature NMR, Temperature-Dependent Raman Spectroscopy, and Quantum Chemical Calculations
The molecular structure of axial and equatorial conformers of 1-silyl-silacyclohexane, C5H10SiHSiH3, and the thermodynamic equilibrium between these species were investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR), temperature-dependent Raman spectroscopy, and quantum chemical calculations (CCSD(T), MP2 and DFr methods). According to GED, the compound exists as a mixture of two conformers possessing the chair conformation of the six-membered ring and C-s symmetry and differing in the axial or equatorial position of the SiH3 group (axial = 57(7) mol %/equatorial = 43(7) mol %) at T = 321 K. This corresponds to an A value (free energy difference = G(axial) - G(equatorial)) of -0.17(15) kcal mol(-1). A low-temperature C-13 NMR experiment using SiD4 as a solvent resulted in an axial/equatorial ratio of 45(3)/55(3) mol % at 110 K corresponding to an A value of 0.05(3) kcal mol(-1), and a Delta G(#) value of 5.7(2) kcal mol(-1) was found at 124 K. Temperature-dependent Raman spectroscopy in the temperature range of 210-300 K of the neat liquid, a THF Solution, and a heptane solution indicates that the axial conformer is favored over the equatorial one by 0.26(10), 0.23(10), and 0.22(10) kcal mol(-1) (Delta H values), respectively. CCSD(T)/CBS and MP2/CBS calculations in general predict both conformations to have very similar stability and are, thus, in excellent agreement with the DNMR result but in a slight disagreement with the GED and Raman results. Two DFT functionals, that account for dispersion interactions, M06-2X/pc-3 and B2PLYP-D/QZVPP, deviate from the high-level coupled cluster and MP2 calculations by only 0.1 kcal mol(-1) on average, whereas B3LYP/pc-3 calculations greatly overestimate the stability of the equatorial conformer.