Journal of Physical Chemistry B, Vol.112, No.37, 11558-11563, 2008
Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates
The polyaniline nanofibers with different sizes were synthesized by using cyclic voltammetry at different potential scan rates, in the presence of ferrocenesulfonic acid. The potential scan rate controlled the formation and growth of polyaniline nuclei, which plays a key role in controlling nanofiber sizes. The average diameters of nanofibers decreased from about 130 nm to about 80 nm as the potential scan rate increased from 6 to 60 mV s(-1). We first observed an ordered change in the following spectra with the nanofiber sizes of polyaniline. The spectra of the X-ray diffraction indicated that the partially crystalline form existed in the polyaniline nanofibers and that the crystallinity of polyaniline increased with decreasing diameter of polyaniline nanofibers. The ESR spectra revealed the fact that the decrease in the intensity of the ESR signal was accompanied by the increase in the value of the peak-to-peak line width Delta H-pp as the diameter of polyaniline nanofibers decreased. The H-1 NMR spectra showed that a peak in a triplet caused by the +/- NH free radical was split into two peaks with different intensities and that their relative intensity also changed with the diameter of the polyaniline nanofibers.