Journal of Physical Chemistry B, Vol.112, No.40, 12753-12760, 2008
An interface between the universal force field and the effective fragment potential method
In order to properly describe reactions in heterogeneous catalyst systems, the reactants, solvent, and bulk effects of the surface must be taken into account. Embedded-cluster QM (quantum mechanics)/MM (molecular mechanics) methods can treat reactions on surfaces (the gas-surface interface), and the effective fragment potential method (EFP) can accurately treat the solvent effects on reactions (the gas-liquid interface). In order to create a QM/MM/EFP hybrid method for treatment of heterogeneous catalytic systems in the presence of a solvent (the liquid-surface interface), an EFP-MM interaction potential has been developed. Example calculations on small clusters of silica and water have been carried out.