화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.112, No.44, 13802-13811, 2008
On the Mechanism of Surfactant Adsorption on Solid Surfaces: Free-Energy Investigations
The adsorption free-energy of surfactant on solid surfaces has been calculated by molecular dynamics (MD) simulation for a model surfactant/solvent system. The umbrella-sampling with the weight histogram analysis method (WHAM) was applied. The entropic and enthalpic contributions to the full potential of mean force (PMF) were obtained to evaluate the detailed thermodynamics of surfactant adsorption in solid/liquid interfaces. Although we observed that this surfactant adsorption process is driven mainly by a favorable enthalpy change, a highly unfavorable entropic contribution still existed. By decomposing the free energy (including its entropic and enthalpic components) into the solvent-induced contribution and the surfactant-wall term, the effect of surface and solvent on the adsorption free-energy has been distinguished. The contribution to the PMF from the surface effect is thermodynamically favorable, whereas the solvent term displays an obviously unfavorable component with a monotonic increase as the surfactant approaches to the surface. The impact of various interactions from the surfaces (both solvent-philic and solvent-phobic) and the solvent on the adsorption PMF of surfactant has been compared and discussed. Compared to the solvent-philic surface, the solventphobic surface generates more stable site for the surfactant adsorption. However, the full PMF profile for the solvent-phobic system shows a clear positive maximum value at the bulk-interface transition region, which leads to a considerable long-range free-energy barrier to the surfactant adsorption. These results have been analyzed in terms of the local interfacial structures. In summary, this comprehensive study is expected to reveal the microscopic interaction mechanisms determining the surfactant adsorption on solid surfaces.