화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.113, No.31, 10779-10791, 2009
Spectral Signatures of Intramolecular Charge Transfer Process in beta-Enaminones: A Combined Experimental and Theoretical Analysis
In this paper, we present spectroscopic signatures of intramolecular charge transfer (ICT) and effects of solvent on the ICT process in 3-(phenylamino)-2-cyclohexen-1-one (PACO), a member of the well-known molecular family, the beta-enaminones. The dual fluorescence in the steady state emission spectra of the molecule in polar solvents indicates the occurrence of ICT, which is further supported by time-resolved studies, using time correlated single photon counting technique with picosecond resolution. To understand the nature of the charge transfer, pH dependent studies of the probe in water were performed, where a quenching of fluorescence was observed even in the presence of very low concentrations of acids. Solvent induced fluorescence quenching was observed in ethanol and methanol. The ICT process was also investigated by quantum chemical calculations. To understand the role of solvents in the ICT process, we have theoretically studied the macroscopic and microscopic solvation of the probe in water. The absorption spectra of the molecule in the gas phase as well as in water were simulated using time dependent density functional theory with cc-pVTZ basis set and self-consistent reaction field theory that models macroscopic solvation. The possibility of microscopic solvation in water was probed theoretically and the formation of 1:3 Molecular clusters by PACO with water molecules has been confirmed. Our findings could have a bearing on pH sensing applications of the probe.