화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.114, No.3, 1361-1367, 2010
Heats of Vaporization of Room Temperature Ionic Liquids by Tunable Vacuum Ultraviolet Photoionization
The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum Ultraviolet synchrotron Source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum Ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfobylimide is determined to be Delta H-vap (298.15 K) = 195 +/- 19 kJ mol(-1). The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta H-vap(298.15 K) = 174 +/- 12 kJ mol(-1)) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta H-vap(298.15 K) = 171 +/- 12 kJ mol(-1)) are consistent with reported experimental Values using electron impact ionization. The tunable vacuum Ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement With MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ob initio Calculations corroborate vaporization of these RTILs as intact cation-anion pairs.