Journal of Polymer Science Part A: Polymer Chemistry, Vol.46, No.20, 6916-6927, 2008
Oxygen Scavengers and Sensitizers for Reduced Oxygen Inhibition in Radical Photopolymerization
Oxygen inhibition in the free-radical photopolymerization of (meth)acrylates is one of the most challenging problems in thin film application. Apart from the utilization of an inert gas atmosphere, additives reducing oxygen inhibition due to production of new propagating centers are used. In the present study, a more straightforward approach to reduce oxygen inhibition by photosensitized generation of singlet oxygen and subsequent scavenging of these species by selective singlet oxygen trappers was investigated. The potential of 1,2-dions conventionally used as type-II photoinitiators for visible light polymerization to function as singlet oxygen generators was verified in sensitized steady state photooxidation experiments in solution. A set of furan and anthracene derivatives were tested as oxygen scavengers and their corresponding relative reaction rates were determined. The ability of these sensitizer/scavenger systems to reduce oxygen inhibition in practical applications was studied in photo-DSC-experiments. In thin film polymerization (investigated by ATR-FTIR), the formation of insufficiently cured surfaces could be prevented by the usage of singlet oxygen trappers. (c) 2008 Wiley Periodicals, Inc.