화학공학소재연구정보센터
Journal of Power Sources, Vol.190, No.2, 417-422, 2009
Electrophoretic deposition of dense BaCe0.9Y0.1O3-x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells
Proton conducting BaCe0.9Y0.1O3-x (BCY10) thick films are deposited on cermet anodes made of nickel-yttrium doped barium cerate using electrophoretic deposition (EPD) technique. BCY10 powders are prepared by the citrate-nitrate auto-combustion method and the cermet anodes are prepared by the evaporation and decomposition solution and suspension method. The EPD parameters are optimized and the deposition time is varied between I and 5 min to obtain films with different thicknesses. The anode substrates and electrolyte films are co-sintered at 1550 degrees C for 2 h to obtain a dense electrolyte film keeping a suitable porosity in the anode, with a single heating treatment. The samples are characterized by Held emission scanning electron microscopy (FE-SEM) and energy dispersion spectroscopy (EDS). A prototype fuel cell is prepared depositing a composite La0.8Sr0.2Co0.8 Fe0.2O3 (LSCF)-BaCe0.9Yb0.1O3-delta (10YbBC) cathode oil the co-sintered half cell. Fuel cell tests that are performed at 650 C oil the prototype single cells show a maximum power density of 174 mW cm(-2). (C) 2009 Elsevier B.V. All rights reserved.