화학공학소재연구정보센터
Journal of Power Sources, Vol.195, No.7, 1821-1828, 2010
Vertical operation of passive direct methanol fuel cell employing a porous carbon plate
Vertical operation of a passive DMFC employing a porous carbon plate, PCP, with different resistances for fluid flow and bubble point pressure was investigated to clarify the properties required for the PCP for vertical operation. Moreover, the cell performance was investigated under different solution head pressures within 22 mm height and was discussed based on the methanol transport through the PCP. In contrast to the horizontal orientation, the static pressure of the liquid as a function of its height on the vertical axis h along the PCP surface, in the vertical orientation, enhanced the convective methanol flux through the PCP and affected the DMFC performance depending on the properties of the PCP and the methanol concentration used. The effect of the solution head pressure on the DMFC performance in the vertical orientation could be controlled by using PCP with high bubble point pressures. The DMFC could attain stable performance under both horizontal and vertical cell orientations and different solution head pressures even with 100% methanol by using a PCP with the proper resistance for the methanol transport and bubble point pressure. A thin PCP of 0.5 mm thickness with the proper resistance enabled the vertical operation producing a constant power density over 40 mW/cm(2) using 100% methanol at 0.25 V. (C) 2009 Elsevier B.V. All rights reserved