화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.42, No.2, 248-253, 1997
Robust, Reduced-Order Modeling for State-Space Systems via Parameter-Dependent Bounding Functions
One of the most important problems in dynamic systems theory is to approximate a higher-order system model with a low-order, relatively simpler model. However, the nominal high-order model is never an exact representation of the true physical system. In this paper the problem of approximating an uncertain high-order system with constant real parameter uncertainty by a robust reduced-order model is considered. A parameter-dependent quadratic bounding function is developed that bounds the effect of uncertain real parameters on the model-reduction error. An auxiliary minimization problem is formulated that minimizes an upper bound for the model-reduction error. The principal result is a necessary condition for solving the auxiliary minimization problem which effectively provides sufficient conditions for characterizing robust reduced-order models.