화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.15, 5124-5130, 2008
Electrostatic control of thickness and stiffness in a designed protein fiber
Attempts to design peptide-based fibers from first principles test our understanding of protein folding and assembly, and potentially provide routes to new biomaterials. Several groups have presented such designs based on a-helical and beta-strand building blocks. A key issue is this area now is engineering and controlling fiber morphology and related properties. Previously, we have reported the design and characterization of a self-assembling peptide fiber (SAF) system based on a-helical coiled-coil building blocks. With preceding designs, the SAFs are thickened, highly ordered structures in which many coiled coils are tightly bundled. As a result, the fibers behave as rigid rods. Here we report successful attempts to design new fibers that are thinner and more flexible by further programming at the amino-acid sequence level. This was done by introducing extended, or "smeared", electrostatic networks of arginine and glutamate residues to the surfaces of the coiled-coil building blocks. Furthermore, using arginine-rather than lysine-in these networks plays a major role in the fiber assembly, presumably by facilitating multidentate intra and intercoiled-coil salt bridges.