화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.21, 6682-6682, 2008
Methionine ligand lability of type I Cytochromes c: Detection of ligand loss using protein film voltammetry
Protein film voltammetry (PFV) is used to interrogate the behavior of a variety of bacterial and mitochondrial His/Met-ligated cytochromes c. While analogous studies upon alkanethiol-modified gold electrodes reveal the anticipated Fe(II/III) couple only, PFV using pyrolytic graphite edge (PGE) electrodes demonstrates the presence of a lower-F potential form of each of the cyts c studied, with a potential of approximiately -100 mV (vs hydrogen). The generation of the novel, lower-potential state is shown to arise specifically from the interaction with the PGE electrode. Simultaneously, the typical Fe(II/III) couple can be observed. PFV of a series of wild-type cytochromes and mutants in the Met-donating loop show that the lower-potential state is highly similar between proteins from Pseudomonas aeruginosa (PA), Hydrogenobacter thermophilus (HT), and horse heart, The generation of the lower-potential form correlates inversely with the stability of the Met-Fe interaction for each of the cytochromes. Comparison with chemically unfolded cyts c indicates that the lower-potential forms detected here are unique, and this distinct state is ascribed to the loss of the Met ligand. Thus, PGE is demonstrated to be a non-innocent electrode surface in PFV studies of His/Met-ligated cytochromes c.