화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.23, 7436-7442, 2008
Electrochemical-recognition of synthetic heparin mimetic at liquid/liquid microinterfaces
Electrochemically controlled molecular recognition of a synthetic heparin mimetic, Arixtra, at nitrobenzene/water microinterfaces was investigated to obtain a greater understanding of interfacial recognition and sensing of heparin and its analogues with biomedical importance. In contrast to unfractionated heparin, this synthetic pentasaccharide that mimics the unique Antithrombin III binding domain of heparin possesses well-defined structure and ionic charge to enable quantitative interpretation of cyclic voltarnmetric/chronoamperometric responses based on the interfacial recognition at micropipet electrodes. Arixtra is electrochemically extracted from the water phase into the bulk nitrobenzene phase containing highly lipophilic ionophores, methyltridodecylammonium or dimethyldioctadecylammonium. Numerical analysis of the kinetically controlled cyclic voltammograms demonstrates for the first time that formal potentials and standard rate constants of polyion transfer at liquid/liquid interfaces are ionophore dependent. Moreover, octadecylammonium and octadecylguanidinium are introduced as new, simple ionophores to model recognition sites of heparin-binding proteins at liquid/liquid interfaces. In comparison to octadecyltrimethylammonium, the best ionophore for heparin recognition at liquid/liquid interfaces reported so far, these new ionophores dramatically facilitate Arixtra adsorption at the interfaces. With a saline solution at physiological pH, an Arixtra molecule is selectively and cooperatively bound to 5 molecules of the guanidinium ionophore, suggesting hydrogen-bond-directed interactions of each guanidinium with a few of 10 negatively charged sulfo or carboxyl groups of Arixtra at the interfaces.