Journal of the American Chemical Society, Vol.130, No.35, 11578-11578, 2008
Dissecting entropic coiling and poor solvent effects in protein collapse
The early events in protein collapse and folding are guided by the protein's elasticity. The contributions of entropic coiling and poor solvent effects like hydrophobic forces to the elastic response of proteins are currently unknown. Using molecular simulations of stretched ubiquitin in comparison with models of proteins as entropic chains, we find a surprisingly high stiffness of the protein backbone, reflected by a persistence length of 1.2 nm, which is significantly reduced by hydrophobic forces acting between protein side chains to an apparent persistence length of 0.3-0.6 nm frequently observed in single-molecule stretching experiments. Thus, the poor solvent conditions of a protein in water lead to a protein compaction much beyond the coiling of an entropic chain and thereby allow a protein to appear softer than when using good solvents.