Journal of the American Chemical Society, Vol.130, No.35, 11783-11790, 2008
DNA-based asymmetric catalysis: Sequence-dependent rate acceleration and enantioselectivity
This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to 2 orders of magnitude compared to Cu-L1 catalysis alone. Furthermore, both the enantioselectivity and the rate enhancement prove to be dependent on the DNA-sequence. These features are the main reasons for the efficient and enantioselective catalysis observed with salmon testes DNA/Cu-L1 in the Diels-Alder reaction. The fact that absolute levels of stereocontrol can be achieved with a simple and weak DNA-binding complex like Cu-L1 is a clear demonstration of the power of the supramolecular approach to hybrid catalysis.