Journal of the American Chemical Society, Vol.130, No.36, 12123-12127, 2008
Oriented organic islands and one-dimensional chains on a Au(111) surface fabricated by electrodeposition: An STM study
Organic islands and oriented one-dimensional (1D) chains are fabricated on a Au(111) surface by electrodeposition. The cyclic voltammograms (CVs) of Au(111) in solutions containing nitrobenzene and picric acid show an electrochemical reaction in a negative potential region, which results in irreversible reductive deposition. The deposition process is monitored by in situ electrochemical scanning tunneling microscopy (ECSTM). At the double layer potential region, for example, nitrobenzene molecules form a well-defined adlayer in a (root 3 x root 3) structure. With potential shifting negative to the reductive region, nitrobenzene is reduced to hydroxyaminobenzene. Organic islands were formed first and then aggregated into ordered 1D chains. The formation of these organic islands and 1D chains is completely potential-dependent. Intriguingly, the so-prepared islands and 1D chains are well-oriented along the reconstructed lines of the underlying Au(111) substrate and stable under ambient conditions even if the sample was removed from electrolyte solution. The results reported here provide a simple and effective method to fabricate oriented organic nanodots and nanowires on a solid surface by an electrochemical technique.