Journal of the American Chemical Society, Vol.130, No.43, 14050-14050, 2008
Mechanism of Enzymatic Birch Reduction: Stereochemical Course and Exchange Reactions of Benzoyl-CoA Reductase
Dearomatizing benzoyl-coenzyme A reductases (BCR) from facultatively anaerobic bacteria are key enzymes in the anaerobic degradation of aromatic compounds. They catalyze the ATP-dependent reduction of benzoyl-CoA (BCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA). A Birch reduction mechanism involving alternate electron transfer and protonation steps has been proposed for BCR. In this work we reacted BCoA in H2O and D2O, and d(5)-BCoA in H2O with BCR and the second enzyme of the pathway, dienoyl-CoA hydratase (DCH). The 1,4 hydration product formed from the dienoyl-CoA, 6-hydroxycyclohex-1-ene-1-carbonyl-CoA, was analyzed by several NMR techniques. The results obtained indicate that BCR stereoselectively forms the trans-dienoyl-CoA product, and DCH stereoselectively catalyzes a trans-1,4 water addition. Moreover, unexpected proton exchanges at C-2 and C-6 were observed. They indicate that a free