Journal of the American Chemical Society, Vol.130, No.46, 15519-15532, 2008
Pressure-induced Magnetic Switching and Linkage Isomerism in K0.4Fe4[Cr(CN)(6)](2.8)center dot 16H(2)O: X-ray Absorption and Magnetic Circular Dichroism Studies
The effect of applied pressure on the magnetic properties of the Prussian blue analogue K0.4Fe4[Cr(CN)(6)](2.8)center dot 16H(2)O (1) has been analyzed by dc and ac magnetic susceptibility measurements. Under ambient conditions, 1 orders ferromagnetically at a critical temperature (T-c) of 18.5 K. Under application of pressure in the 0-1200 MPa range, the magnetization of the material decreases and its critical temperature shifts to lower temperatures, reaching T-c = 7.5 K at 1200 MPa. Pressure-dependent Raman and Mossbauer spectroscopy measurements show that this striking behavior is due to the isomerization of some Cr-III-C N-Fe-II linkages to the Cr-III-N C-Fe-II form. As a result, the ligand field around the iron(II) centers increases, and the diamagnetic low-spin state is populated. As the number of diamagnetic centers in the cubic lattice increases, the net magnetization and critical temperature of the material decrease considerably. The phenomenon is reversible: releasing the pressure restores the magnetic properties of the original material. However, we have found that under more severe pressure conditions, a metastable sample containing 22% Cr-III-N C-Fe-II linkages can be obtained. X-ray absorption spectroscopy and magnetic circular dichroism of this metastable sample confirm the linkage isomerization process.