화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.43, No.10, 1389-1398, 1998
Global approximate output tracking for nonlinear systems
This paper addresses the global output tracking problem for nonlinear systems with singular points. For nonlinear systems which satisfy a suitable observability condition, the authors identify a class of smooth output trajectories which the system can track using continuous open-loop controls. This class includes all output trajectories generated by smooth state feedback. They then study the problem of approximate output tracking using discontinuous time-varying feedback controllers. Given a smooth output trajectory for which exact tracking is possible, the authors construct a discontinuous feedback controller which achieves robust tracking of the desired output trajectory in the face of perturbations. Finally, it is shown that their results can be applied to the control of a chain system, and some numerical results are presented to illustrate the performance of their controller.