Journal of the American Chemical Society, Vol.131, No.25, 8855-8860, 2009
Iridium-Catalyzed Asymmetric Hydrogenation Yielding Chiral Diarylmethines with Weakly Coordinating or Noncoordinating Substituents
Diarylimethine-containing stereocenters are present in pharmaceuticals and natural products, making the synthetic methods that form these chiral centers are important in industry. We have applied iridium complexes with novel N,P-chelating ligands to the asymmetric hydrogenation of trisubstituted olefins, forming diarylmethine chiral centers in high conversions and excellent enantioselectivities (up to 99% ee) for a broad range of substrates. Our results support the hypothesis that steric hindrance in one specific area of the catalyst is playing a key role in stereoselection, as the hydrogenation of substrates differing little at the prochiral carbon occurred with high enantioselectivity. As a result, excellent stereodiscrimination was obtained even when the prochiral carbon bore, for example, phenyl and p-tolyl groups.