화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.131, No.34, 12240-12249, 2009
Influence of Biaryl Phosphine Structure on C-N and C-C Bond Formation
In order to understand how electronic and other structural characteristics of biphenyl phosphine ligands affect Pd-catalyzed C-N and C-C bond-forming reactions, a new ligand, 2-(dicyclohexylphosphino)-4'-(N,N-dimethylamino)-1,1'-biphenyl, was synthesized. This compound is isomeric with the commercially available 2-(dicyclohexylphosphino)-2'-(N,N-dimethylamino)-1,1'-biphenyl that has been useful in C-N bond-forming reactions of nucleosides. The new p-dimethylamino biphenyl ligand bears electronic similarities to the o-dimethylamino isomer, but it also possesses structural similarities to 2-(dicyclohexylphosphino)biphenyl, such as the unsubstituted ortho positions in the non-phosphine ring. Whereas 2-(dicyclohexylphosphino)biphenyl can support catalysts for C-C bond formation, it was not effective in promoting aryl amination of a nucleoside substrate. However, the new ligand proved to be effective in promoting both aryl amination and C-C bond-forming reactions of nucleoside substrates, with some reactions even occurring at room temperature. Thus, the composite structural elements of this new ligand are thought to be criteria for reactivity of the catalytic system derived from it. We have probed the structures of the isomeric N,N-dimethylamino biphenyl ligands by X-ray crystallographic analysis. Interactions of the two ligands with Pd(OAC)(2) have been investigated by P-31 NMR, and they show substantial stoichiometry-dependent differences. These results have been compared to the interactions of Pd(OAc)(2) with 2-(dicyclohexylphosphino)biphenyl as well as 2-(di-tert-butylphosphino)biphenyl, and they reveal marked differences as well. In this process, three cyclopalladated biaryl derivatives have been isolated and characterized by X-ray analysis.