화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.131, No.40, 14454-14465, 2009
Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium Complex to BX3 Compounds
This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H-2 gas to form B-H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides; to three-coordinate BX3 (X = OR, SPh, F, H; R = Ph, p-C6H4OMe, C6F5, Bu-t, Si(Me)(3)) compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (Delta G degrees(H-)) were determined for HRh(dmpe)(2) and HRh(depe)(2), where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt3](-) on this scale. Isodesmic reactions between [HBEt3](-) and selected BX3 compounds to form BEt3 and [HBX3](-) were examined computationally to determine their relative hydride affinities. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX3 compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX3 compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)(3) using HRh(dmpe)(2) in the presence of triethylamine to form Et3N-BH3 in high yields.