화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.131, No.44, 16010-16010, 2009
Heating and Cooling Dynamics of Carbon Nanotubes Observed by Temperature-Jump Spectroscopy and Electron Microscopy
Microscopy imaging indicates that in situ carbon nanotubes (CNTs) irradiation with relatively low dosages of infrared radiation results in significant heating of the tubes to temperatures above 1300 K. Ultrafast temperature-jump experiments reveal that CNTs laser-induced heating and subsequent cooling in solution take tens and hundreds of picoseconds, respectively. Given the reported transient behavior, these observations suggest novel ways for a T-jump methodology, unhindered by the requirement for excitation of water in the study of biological structures. They also provide the rate information needed for optimization of photothermal therapy that invokes infrared irradiation to selectively heat and annihilate cancer cells.