Polymer(Korea), Vol.34, No.2, 159-165, March, 2010
리빙 음이온 중합에 의한 Dipyridine 말단 관능화 폴리스티렌 및 폴리부타디엔의 합성
Anionic Synthesis of Dipyridine Chain End-Functionalized Polystyrene and Polybutadiene
E-mail:
초록
리빙 음이온 중합에 의해 sec-BuLi으로 개시된 polystyryllithium (PSLi)과 polybutadienyllithium (PBDLi)의 연쇄 말단에 di(2-pyridyl)ketone(DPK)을 반응시켜 dipyridine이 말단 관능화된 폴리스티렌과 폴리부타디엔을 각각 합성하였다. 분자량이 1000∼2000 g/mol인 PSLi과 PBDLi을 사용하여 TMEDA 존재하에서 말단 DPK-관능화 반응 후 GPC에 의한 분자량 특성분석과 1H-NMR, 13C-NMR 분석에 의한 고분자 말단 구조 분석을 통하여 말단 관능화 수율과 함께 유기리튬의 피리딘 링 친핵성 부가 반응으로 인한 커플링 현상을 확인하였다. PBDLi에 DPK를 부가하는 일반적인 말단 관능화 방법에 비하여 역으로 부가하는 방법에서 최대 9% 정도의 커플링 정도와 86% 이상의 관능화 수율을 보였다. 이 반응에서 LiCl 첨가효과는 없었으며, 반응온도가 낮을수록 높은 관능화 수율을 나타내었다.
Dipyridine-terminated polystyrenes and polybutadienes were synthesized by the chain endfunctionalization reaction of polystyryllithium (PSLi) and polybutadienyllithium (PBDLi) with di(2-pyridyl) ketone(DPK) using a living anionic polymerization method in the Ar-glove box. Living polymeric lithiums with low molecular weights (Mw=1000∼2000 g/mol) were used to investigate the chain end-functionalization yield with DPK and the degree of coupling reaction by the attack of organolithium to the pyridine ring in the presence of TMEDA using GPC, 1H-NMR, 13C-NMR analysis. DPK-terminated PBD exhibited much higher functionalization yield and less amount of coupling reaction compared with DPK-terminated PS. 86% functionalization yield with 9% degree of coupling was obtained when the PBDLi was added dropwise to DPK solution at room temperature. The functionalization yield was increased as the reaction temperature decreased, however, no LiCl effect was observed in this chain end-functionalization reaction with DPK.
Keywords:living anionic polymerization;chain end-functionalized polymer;di(2-pyridyl)ketone;dipyridineterminated polymer
- Goethals EJ, Telechelic Polymers: Synthesis and Applications, CRC Press Inc. (1989)
- Quirk RP, Hsieh HL, Anionic Polymerization: Principles and Practical Applications, Dekker, New York, Chapter 11, p 261 (1996)
- Quirk RP, Chong TH, Jiang K, Gomochak DL, Yoo T, Andes KT, Mathers RT, Macromol. Symp., 195, 69 (2003)
- Jagur-Grodzinski J, J. Polym. Sci. A: Polym. Chem., 40(13), 2116 (2002)
- Quirk RP, Lee Y, Macromol. Symp., 157, 161 (2000)
- US Patent 4,550,142 (1985) to Nippon Zeon
- Nagata N, Kobatake T, Watanabe H, Ueda A, Yoshioka A, Rubber Chem. Tech., 60, 837 (1987)
- Lim KW, Ji SC, Jung KY, Kim TJ, Lee BJ, Elastomers and Composites, 44, 232 (2009)
- Quirk RP, Takizawa T, Lizarraga G, Zhu LF, J. Appl. Polym. Sci., Polym. Symp., 50, 23 (1992)
- Yamataka H, Fujimura N, Kawafuji Y, Hanafusa T, J. Am. Chem. Soc., 109, 4305 (1987)
- Kang NG, Rahman MS, Samal S, Lee JS, Polymer Science and Technology, 16, 777 (2005)
- Moller M, Lenz RW, Makromol. Chem., 190, 1153 (1989)
- Luxton AR, Quig A, Delvaux MJ, Fetters LJ, Polymer, 19, 1320 (1978)
- Quirk RP, Corona-Galvan S, Macromolecules, 34(5), 1192 (2001)
- Krasnoselskaya G, Erussalimsky BL, Makromol. Chem. Rapid Commun., 6, 191 (1985)
- McWhinnie WR, Miller JD, Adv. Inorg. Chem. Radiochem., 12, 135 (1969)
- Braunecker WA, Mayjaszewski K, Prog. Polym. Sci., 32, 93 (2007)
- Matyjaszewski K, Xia JH, Chem. Rev., 101(9), 2921 (2001)
- Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ, J. Power Sources, 89(2), 219 (2000)
- Croce F, Persi L, Ronci F, Scrosati B, Solid State Ion., 135(1-4), 47 (2000)
- Kunkel D, Muller A, Lochmann L, Janata M, Makromol. Chem., Macromol. Symp., 60, 315 (1992)
- Fayt R, Forte R, Jacobs R, Jerome R, Ouhadi T, Teyssie P, Macromolecules, 20, 1442 (1987)
- Janata M, Lochmann L, Muller AHE, Makromol. Chem., 194, 625 (1993)
- Quirk RP, Hsieh HL, Anionic Polymerization: Principles and Practical Applications, Dekker, New York, Chapter 1 and Chapter 7 (1996)
- Milner R, Young RN, Luxton AR, Polymer, 24, 543 (1983)
- Quirk RP, Yin J, J. Polym. Sci. Part A: Polym. Chem., 30, 2349 (1992)