화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.3, 385-389, May, 2010
Effect of transition metals (Ni, Sn and Mo) in Pt5Ru4Malloy ternary electrocatalyst on methanol electro-oxidation
E-mail:
Pure Pt, PtRu and Pt5Ru4M (M = Ni, Sn and Mo) electrocatalysts were prepared using a NaBH4 reduction method. The alloy formation and particle size of the electrocatalysts were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of crystalline Pt was confirmed regardless of the addition of Ru and transition metals. The average particle size was found to be about 2.5-3.5 nm. The electrochemical properties of the electrocatalysts were analyzed by methanol electro-oxidation and CO stripping in the half cell. The mass activity and specific activity were obtained through these experiments. Methanol electro-oxidation and the specific activity of the PtRuNi electrocatalyst were much higher than that of PtRu electrocatalyst. The specific activity of methanol electro-oxidation based on EAS for the PtRuSn and PtRuMo electrocatalysts was higher than that of the PtRu, although their mass activity of methanol electro-oxidation was lower.
  1. Choi JH, Park KW, Park IS, Nam WH, Sung YE, Electrochim. Acta, 50(2-3), 787 (2004)
  2. Uhm S, Lee J, J. Ind. Eng. Chem., 15(5), 661 (2009)
  3. Hamnett A, Catal. Today, 38(4), 445 (1997)
  4. Yamaguchi T, Kuroki H, Miyata, Electrochem. Commun., 7, 730 (2005)
  5. Arico AS, Srinivasan S, Antonucci V, Fuel Cells., 1, 133 (2001)
  6. Xu J, Hua K, Sun G, Wang C, Lv X, Wang Y, Electrochem. Commun., 8, 982 (2006)
  7. Luo J, Njoki PN, Lin Y, Mott D, Wang LY, Zhong CJ, Langmuir, 22(6), 2892 (2006)
  8. Shobha T, Aravinda CL, Bera P, Devi LG, Mayanna SM, Mater. Chem. Phys., 80(3), 656 (2003)
  9. Watanabe M, Uchida M, Motto S, J. Electroanal. Chem., 229, 395 (1987)
  10. Rodriguez-Nieto FJ, Morante-Catacora TY, Cabrera CR, J. Electroanal. Chem., 571(1), 15 (2004)
  11. Liang YM, Zhang HM, Yi BL, Zhang ZH, Tan ZC, Carbon., 43, 3114 (2005)
  12. Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim H, Wieckowski A, J. Phys. Chem. B, 106(8), 1869 (2002)
  13. Ley KL, Liu RX, Pu C, Fan QB, Leyarovska N, Segre C, Smotkin ES, J. Electrochem. Soc., 144(5), 1543 (1997)
  14. He CZ, Kunz HR, Fenton JM, J. Electrochem. Soc., 144(3), 970 (1997)
  15. Sivakumar P, Tricoli V, Electrochem. Solid-State Lett., 9, 167 (2006)
  16. Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskov JK, J. Phys. Chem. B, 107(40), 11013 (2003)
  17. Schmidt TJ, Gasteiger HA, Stab GD, Urban PM, Kolb DM, Behm RJ, J. Electrochem. Soc., 145(7), 2354 (1998)
  18. Kawaguchi T, Rachi Y, Sugimoto W, Murakami Y, Takasu Y, J. Appl. Electrochem., 36(10), 1117 (2006)
  19. Jeon MK, Lee KR, Daimon H, Nakahara A, Woo SI, Catal. Today, 132(1-4), 123 (2008)
  20. Wang ZB, Yin GP, Zhang J, Sun YC, Shi PF, Electrochim. Acta, 51(26), 5691 (2006)
  21. Wang ZB, Zuo PJ, Yin GP, J. Alloys Compd., 479, 395 (2009)
  22. Liu JY, Cao JY, Huang QH, Li XW, Zou ZQ, Yang H, J. Power Sources, 175(1), 159 (2008)
  23. Radmilovic V, Gasteiger HA, Ross PN, J. Catal., 154(1), 98 (1995)
  24. Umeda M, Ojima H, Mohamedi M, Uchida I, J. Power Sources, 136(1), 10 (2004)
  25. Choi WC, Woo SI, J. Power Sources, 124(2), 420 (2003)
  26. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L, J. Power Sources, 105(1), 13 (2002)
  27. Wang ZB, Yin GP, Shi PF, Sun YC, Electrochem. Solid-State Lett., 9, 13 (2006)
  28. Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Abstracts of the 194th Meeting of the Electrochemical Society, Boston, (no. 1087). (1998)
  29. Grgur BN, Markovic NM, Ross PN Jr., Abstracts of the 194th Meeting of the Electrochemical Society, Boston, (no. 1097). (1998)
  30. Friedrich KA, Henglein F, Stimming U, Unkauf W, Electrochim. Acta, 45(20), 3283 (2000)
  31. Mathiyarasu J, Remona AM, Mani A, Phani KLN, Yegnaraman V, J. Solid State Electrochem., 8, 968 (2004)