Applied Chemistry for Engineering, Vol.21, No.2, 137-141, April, 2010
4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole을 기본으로 한 고분자의 합성 및 광전변환 특성
Synthesis and Photovoltaic Properties of Low Band Gap π-Cojugated Polymer Based on 4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole
E-mail:
초록
4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole과 1,4-bis(dodecyloxy)-2,5-divinylbenzene을 Heck coupling 중합법을 이용하여 poly[4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) 공중합체를 합성하였다. 합성한 PPVTBT의 최대흡수파장과 band gap은 각각 550 nm와 1.74 eV이고 HOMO와 LUMO enegry level은 각각 -5.24 eV, -3.50 eV로 나타났다. 합성한 공중합체인 PPVTBT와 (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-C61 (PCBM)을 1 : 6의 중량비로 blend하여 제작한 소자의 효율은 AM 1.5 G, 1 sun 조건(100 mA/cm2)에서 0.16%의 효율을 보였다. 그리고 소자의 Jsc (short circuit current), FF (fill factor)와 Voc (open circuit voltage)는 각각 0.74 mA/cm2, 31%, 0.71 V로 나타났다.
Poly [4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) was synthesized by the Heck coupling reaction between 4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole and 1,4-bis(dodecyloxy)-2,5-divinylbenzene. The maximum absorption and band gap of PPVTBT were 550 nm and 1.74 eV, respectively. The HOMO and LUMO energy
level of PPVTBT were -5.24 eV and -3.50 eV, respectively. The photovoltaic device based on the blend of PPVTBT and (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-C61 (PCBM) (1 : 6 by weight ratio) was fabricated. The efficiency of device was 0.16%. The short circuit current density (Jsc), fill factor (FF) and open-circuit voltage (Voc) of the device was 0.74 mA/cm2, 31% and 0.71 V, respectively, under AM 1.5 G and 1 sun condition (100 mA/cm2).
- Tang CW, Appl. Phys. Lett., 48, 183 (1986)
- Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
- Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB, Appl. Phys. Let., 68, 3120 (1996)
- Yu G, Heeger AJ, J. Appl. Phys., 78, 4510 (1995)
- Brabec CJ, Sariciftci NS, Hummelen JC, Adv. Funct. Mater., 11(1), 15 (2001)
- Granstrom M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH, Nature, 397, 257 (1998)
- Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y, Nature Materials, 4, 864 (2005)
- Ma WL, Yang CY, Gong X, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
- Svensson M, Zhang FL, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganas O, Andersson MR, Adv. Mater., 15(12), 988 (2003)
- Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y, Appl. Phys. Lett., 84, 1653 (2004)
- Kim JH, Lee H, Synth. Met., 157, 1040 (2007)
- Pilgram K, Zupan M, Skile R, J. Heterocycl. Chem., 6, 629 (1970)
- Kim JH, Lee H, Chem. Mater., 14, 2270 (2002)
- Heck RF, Org. React., 27, 345 (1982)
- Beletskaya IP, Cheprakov AV, Chem. Rev., 100(8), 3009 (2000)
- Grisorio R, Mastrorilli P, Nobile CF, Romanazzi G, Suranna GP, Gigli G, Piliego C, Ciccarella G, Cosma P, Acierno D, Amendola E, Macromolecules, 40(14), 4865 (2007)
- Bangcuyo CG, Evans U, Myrick ML, Bunz UHF, Macromolecules, 34(22), 7592 (2001)
- Kroon JM, Wienk MM, Verhees WJH, Hummelen JC, Thin Solid Films, 403, 223 (2002)
- Wu C, Strum, Register JC, Tian RA, Dana J, Thompson EP, M. E. IEEE Trans. Electron Devices, 44, 1269 (1997)
- Shi CJ, Yao Y, Yang Y, Pei QB, J. Am. Chem. Soc., 128(27), 8980 (2006)
- Chen CP, Chan SH, Chao TC, Ting C, Ko BT, J. Am. Chem. Soc., 130(38), 12828 (2008)
- Inganas O, Roman LS, Zhang FL, Johansson DM, Andersson MR, Hummelen JC, Synth. Met., 121, 1525 (2001)
- Chan SH, Chen CP, Chao TC, Ting C, Lin CS, Ko BT, Macromolecules, 41(15), 5519 (2008)