화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.2, 137-141, April, 2010
4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole을 기본으로 한 고분자의 합성 및 광전변환 특성
Synthesis and Photovoltaic Properties of Low Band Gap π-Cojugated Polymer Based on 4,7-Di-thiophen-2-yl-benzo[1,2,5]thiadiazole
E-mail:
초록
4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole과 1,4-bis(dodecyloxy)-2,5-divinylbenzene을 Heck coupling 중합법을 이용하여 poly[4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) 공중합체를 합성하였다. 합성한 PPVTBT의 최대흡수파장과 band gap은 각각 550 nm와 1.74 eV이고 HOMO와 LUMO enegry level은 각각 -5.24 eV, -3.50 eV로 나타났다. 합성한 공중합체인 PPVTBT와 (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-C61 (PCBM)을 1 : 6의 중량비로 blend하여 제작한 소자의 효율은 AM 1.5 G, 1 sun 조건(100 mA/cm2)에서 0.16%의 효율을 보였다. 그리고 소자의 Jsc (short circuit current), FF (fill factor)와 Voc (open circuit voltage)는 각각 0.74 mA/cm2, 31%, 0.71 V로 나타났다.
Poly [4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole]-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene (PPVTBT) was synthesized by the Heck coupling reaction between 4,7-Di-thiophen-2-yl-benzo(1,2,5)thiadiazole and 1,4-bis(dodecyloxy)-2,5-divinylbenzene. The maximum absorption and band gap of PPVTBT were 550 nm and 1.74 eV, respectively. The HOMO and LUMO energy level of PPVTBT were -5.24 eV and -3.50 eV, respectively. The photovoltaic device based on the blend of PPVTBT and (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-phenyl[5,6]-C61 (PCBM) (1 : 6 by weight ratio) was fabricated. The efficiency of device was 0.16%. The short circuit current density (Jsc), fill factor (FF) and open-circuit voltage (Voc) of the device was 0.74 mA/cm2, 31% and 0.71 V, respectively, under AM 1.5 G and 1 sun condition (100 mA/cm2).
  1. Tang CW, Appl. Phys. Lett., 48, 183 (1986)
  2. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  3. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB, Appl. Phys. Let., 68, 3120 (1996)
  4. Yu G, Heeger AJ, J. Appl. Phys., 78, 4510 (1995)
  5. Brabec CJ, Sariciftci NS, Hummelen JC, Adv. Funct. Mater., 11(1), 15 (2001)
  6. Granstrom M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH, Nature, 397, 257 (1998)
  7. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y, Nature Materials, 4, 864 (2005)
  8. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
  9. Svensson M, Zhang FL, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganas O, Andersson MR, Adv. Mater., 15(12), 988 (2003)
  10. Zhou Q, Hou Q, Zheng L, Deng X, Yu G, Cao Y, Appl. Phys. Lett., 84, 1653 (2004)
  11. Kim JH, Lee H, Synth. Met., 157, 1040 (2007)
  12. Pilgram K, Zupan M, Skile R, J. Heterocycl. Chem., 6, 629 (1970)
  13. Kim JH, Lee H, Chem. Mater., 14, 2270 (2002)
  14. Heck RF, Org. React., 27, 345 (1982)
  15. Beletskaya IP, Cheprakov AV, Chem. Rev., 100(8), 3009 (2000)
  16. Grisorio R, Mastrorilli P, Nobile CF, Romanazzi G, Suranna GP, Gigli G, Piliego C, Ciccarella G, Cosma P, Acierno D, Amendola E, Macromolecules, 40(14), 4865 (2007)
  17. Bangcuyo CG, Evans U, Myrick ML, Bunz UHF, Macromolecules, 34(22), 7592 (2001)
  18. Kroon JM, Wienk MM, Verhees WJH, Hummelen JC, Thin Solid Films, 403, 223 (2002)
  19. Wu C, Strum, Register JC, Tian RA, Dana J, Thompson EP, M. E. IEEE Trans. Electron Devices, 44, 1269 (1997)
  20. Shi CJ, Yao Y, Yang Y, Pei QB, J. Am. Chem. Soc., 128(27), 8980 (2006)
  21. Chen CP, Chan SH, Chao TC, Ting C, Ko BT, J. Am. Chem. Soc., 130(38), 12828 (2008)
  22. Inganas O, Roman LS, Zhang FL, Johansson DM, Andersson MR, Hummelen JC, Synth. Met., 121, 1525 (2001)
  23. Chan SH, Chen CP, Chao TC, Ting C, Lin CS, Ko BT, Macromolecules, 41(15), 5519 (2008)