Macromolecular Rapid Communications, Vol.30, No.16, 1406-1412, 2009
Dry Spinning Based Spinneret Based Tunable Engineered Parameters (STEP) Technique for Controlled and Aligned Deposition of Polymeric Nanofibers
Polymeric nanofibers are finding increasing number of applications and hold the potential to revolutionize diverse fields such as tissue engineering, smart textiles, sensors, and actuators. Aligning and producing high aspect ratio fiber arrays (length/diameter > 2 000) in the sub-micron and nanoscale diameters has been challenging due to fragility of polymeric materials, thus making it difficult to deposit them as one dimensional structures functionally interfaced with other systems. Here, we present a pseudo dry spinning technique which allows precise control on fiber diameters and further allows deposition of fiber arrays in aligned configurations. Control on fiber diameters ranging from 50-500 nm and having lengths of several millimeters is achieved by altering the polymeric solution concentration. In the dilute and semi-dilute unentangled concentration domain droplets or beaded fibers are observed to form. Smooth uniform diameter fibers are observed to form at the onset of semi-dilute entangled concentration regime. For a given molecular weight, the increase in fiber diameter with increasing solution concentration is attributed to both the increase in the entanglement density and the decrease in the radius of gyration of solvated polymer molecules. Using this technique polymeric fiber arrays in single and multiple layers are demonstrated which can be used towards developing strong textiles biological scaffolds and sensor networks.