화학공학소재연구정보센터
Langmuir, Vol.24, No.13, 6754-6758, 2008
Lipid nanotubule fabrication by microfluidic tweezing
There is currently great interest in the development of lipid enclosed systems with complex geometrical arrangements that mimic cellular compartments. With biochemical functionalization, these soft matter devices can be used to probe deeper into life's transport dominated biochemical operations. In this paper, we present a novel tool for machining lipid nanotubules by microfluidic tweezing. A bilayer poly(dimethylsiloxane) (PDMS) device was designed with a lipid reservoir that was loaded by capillary action for lipid film deposition. The lipid reservoir is vertically separated from an upper flow for controlled material wetting and the formation of giant tubule bodies. Three fluidic paths are interfaced for introduction of the giant tubules into the high velocity center of a parabolic flow profile for exposure to hydrodynamic shear stresses. At local velocities approximating 2 mm s(-1), a 300-500 nm diameter jet of lipid material was tweezed from the giant tubule body and elongated with the flow. The high velocity flow provides uniform drag for the rapid and continuous fabrication of lipid nanotubules with tremendous axial ratios. Below a critical velocity, a remarkable shape transformation occurred and the projected lipid tubule grew until a constant 3.6 mu m diameter tubule was attained. These lipid tubules could be wired for the construction of advanced lifelike bioreactor systems.